Shock and Awe

Brought to you by Hopkins at Home

Shock and Awe: Impacts in Space, Science, and Society

An asteroid threatens Earth. An earthquake swallows a city. A blast rips through a street. Shocks surround us - whether light-years away in space or around the corner in a car crash.

Together, we engage in a visual exploration of the story of shocks in materials and in systems. We study impact craters, earthquakes, nuclear events, and the life and death of asteroids. We learn how to protect the things we hold dear from the shocks that surround us. Finally, we explore creative extensions into the visual arts, the collapse of societies, and even your morning commute.

Beginning Tuesday, May 5 at 6 pm, join KT Ramesh for four sessions, one per week, 50 minutes total. Each session will consist of a 30 minute lecture, plus a 15 minute AMA (Ask me anything).

  • Week 1: The story of shocks in science and society – some basic concepts
  • Week 2: The breaking of worlds: fracture and fatigue among the asteroids
  • Week 3: Shocks in the human world: brain injury, crash, …
  • Week 4: Extensions: the collapse of societies, and resilience to extreme events

ramesh

DIRECTOR, HEMI

K.T. Ramesh, the Alonzo G. Decker, Jr., Professor of Science and Engineering at Johns Hopkins, is known for research in impact physics and the failure of materials under extreme conditions. Ramesh also is a professor in the Department of Mechanical Engineering and holds joint appointments in the Department of Earth and Planetary Sciences and the Department of Materials Science and Engineering. He is the founding director of the Hopkins Extreme Materials Institute (HEMI), which addresses the ways in which people, structures and the planet interact with and respond to extreme environments. HEMI brings together experts from Johns Hopkins’ Whiting School of Engineering, Krieger School of Arts and Sciences, and Applied Physics Laboratory, as well as scientists and engineers from other universities, government, and industry.

Ramesh’s current research focuses on the design of materials for extreme conditions, the massive failure of rocks and ceramics, impact processes in planetary science, and impact biomechanics. In one project, his lab is developing a detailed digital model of the human brain to help address how brain injury results from head impacts. Other current projects include the use of laser shock experiments to study the deformation and failure of protection materials for the U.S. Army, the use of data science approaches in materials design, the development of a hypervelocity facility for defense and space applications, and modeling the disruption of asteroids that could hit the Earth. He has written over 200 archival journal publications and is the author of the book “Nanomaterials: Mechanics and Mechanisms.”

Ramesh has received numerous research awards including the Murray Medal and the Lazan and Hetenyi awards, all from the Society for Experimental Mechanics. He is a recipient of the Johns Hopkins University’s William H. Huggins Award for Excellence in Teaching. Ramesh is a Fellow of the American Association for the Advancement of Science, the American Academy of Mechanics, the Society for Experimental Mechanics, and the American Society of Mechanical Engineers. He served as president of the Society of Engineering Science and has played a leadership role in other professional societies. He holds memberships in a number of scientific societies, and provides scientific advice to national and international advisory bodies.

Ramesh received his bachelor’s degree in Mechanical Engineering from the Bangalore University, in India, in 1982. He then studied at Brown University, where he received an ScM in Solid Mechanics in 1985, an ScM in Applied Mathematics in 1987, and a PhD in Solid Mechanics in 1988. Ramesh completed postdoctoral work in solid mechanics at the University of California, San Diego, before joining the Whiting School of Engineering faculty in 1988. He served as chair of the Department of Mechanical Engineering from 1999 to 2002.

 Event Date
Tuesday, May 5, 2020
Start Time: 6:00pm
End Time: 7:00pm

 Contact
Hopkins at Home
hopkinsathome@jhu.edu

Status message

Thank you for your interest in this Hopkins at Home mini-course. This course has reached capacity. To be placed on a waiting list, please click here

Please revisit the
Hopkins at Home website for new courses!